技術文章
TECHNICAL ARTICLES碳化硅陶瓷材料具有:耐磨、耐腐蝕、高硬度、低密度以及較高的高溫強度等優點,因此近年來在各個領域中迅速普及,發展非常迅速。在航空航天、核工業、石油工業、化學工業、輕紡工業、食品工業等需要在高溫、高速、耐腐蝕、真空、電絕緣、無磁、干摩擦等特殊環境下,這種新型陶瓷材料難以的替代作用正在被人們逐漸認識。除以上的優點之外,在常壓燒結碳化硅陶瓷材料中,游離硅和游離碳含量極少。譬如在精細化工行業里,超純凈流體輸送過程中,要求高潔凈度,常壓燒結碳化硅陶瓷材料可以提供非常可靠的運輸環境,對輸送...
金屬基復合材料由于結構特殊,因此在傳熱性能方面具有較好的優勢。其中,金剛石/鋁復合材料由于具有低密度、高導熱和熱膨脹系數可調等優勢而成為熱管理領域的研究熱點和發展方向,例如作為導熱性能優異的熱管理材料,可以協調逐漸增大的功率密度與周圍環境的溫差,實現高效散熱并降低與芯片材料熱膨脹系數不匹配的目的,提高系統的穩定性和可靠性。金剛石/鋁復合材料導熱性能的優劣很大程度上依賴于制備工藝,因此,復合工藝方法在材料研究中顯得尤為重要。金屬基復合材料的制備方法多種多樣,隨著工藝技術和裝備的...
對于金屬、陶瓷以及一些難熔金屬中間化合物粉末的燒結,一般采用兩種燒結方式即無壓燒結和有壓燒結。而目前常用的有壓燒結主要常采用以下三種方式,熱等靜壓燒結、熱壓燒結及氣壓燒結。隨著大量新材料的不斷被研發出來及工業化量產的需求,上述三種有壓燒結被大量應用于新材料的制備。熱等靜壓燒結及氣壓燒結設備由于自身結構特殊,生產成本較為昂貴,對于很多生產型廠家來說,并不是較好的選擇,因而研發成本較低的真空熱壓燒結爐有著其現實意義。現在的研究及生產實踐證明,熱壓材料致密化的過程包括塑性流動、粘性...
非晶合金的形成晶體是通過結晶過程形成的具有規則幾何形狀的固體,它是由原子或者分子按照一定規律周期性排列形成的。與晶體相對應的,原子或分子不規則排列,沒有周期性和不具有對稱性的固體叫做非晶。它是一種長程無序、短程有序的結構。由于受到非晶形成能力的限制,非晶合金多以粉末、細絲和薄帶等低維形式存在。大塊非晶合金的出現拉開了非晶合金的序幕,制備要點是冷卻過程中抑制晶體相的形核和長大。非晶合金的制備目前大塊非晶合金的制備方法主要分為兩種:直接凝固法和粉末固結法。直接凝固法主要包括水淬法...
SPS技術研究現狀粉末冶金技術具有短流程、節能耗、低成本、少加工等一系列優點,可自由組裝材料結構從而準確的調控材料性能,是綠色制造技術的重要發展方向。而放電等離子燒結技術具有快速、低溫、節能、環保、操作簡便、產品性能優異等優勢,廣泛應用于金屬、陶瓷、硬質合金、梯度功能材料等方面,是目前關注度較高的新型制備技術和工藝之一。SPS技術是在模具和粉末顆粒之間或塊體樣品中直接通入脈沖電流進行燒結或者連接的一種快速成型的制備方法,是20世紀90年代以來開始研究的一種快速燒結新工藝。相比...
鉬及鉬合金具有優異的高溫力學性能,低的膨脹系數和高的導電導熱系數,是非常具有應用前景的難熔金屬材料,在宇航、電子和核能等眾多工業領域都有很廣泛的應用。有相關學者圍繞改善鉬合金的力學性能做了大量的研究工作,雖然合金的強度和硬度有大幅的提升,但是此時合金的韌性往往會出現下降,為了兩者兼顧,細化晶粒就是較好的解決方案之一。近些年發展起來的SPS燒結法利用的是脈沖能、放電脈沖壓力和焦耳熱產生瞬時高溫場來實現均勻燒結的過程,具有升溫速度快、燒結時間短、組織均勻、致密度高等可控的鮮明特點...
放電等離子燒結(SparkPlasmaSintering)即SPS,是將金屬、陶瓷等粉末裝入模具內,利用上、下模沖及通電電極將特定燒結電源和壓制壓力施加于燒結粉末,經放電活化、熱塑變形和冷卻而完成,是制取高性能材料的一種粉末冶金燒結技術。放電等離子燒結系統能夠實現在燒結過程中加壓,脈沖電流產生的等離子體及燒結過程中的加壓有利于降低粉末的燒結溫度。具有升溫速率快、燒結時間短、組織結構可控、節能環保等鮮明特點。脈沖電流通過粉末粒子SPS在材料制備中的應用由于SPS*的燒結機理,S...
放電等離子體燒結(SPS)是一種快速燒結方法,在低的大氣壓下利用軸向力和脈沖電流對粉末進行高速加熱固化的燒結技術。這種加熱方式能夠施加非常高的加熱溫度,能夠大幅提升致密度(見下圖),將納米粉末的固有性質保持在其致密的產品中。SPS系統的基本結構如下圖所示。該系統主要包含垂直加壓系統、水冷系統、氣氛控制系統,脈沖電流發生器和控制器等。粉末材料堆疊在燒結模具腔室中,在軸向壓力和脈沖電流的共同作用下,溫度迅速升高到高于環境溫度1000~2500℃,從而在幾分鐘內就能生產出高質量的燒...